substituted YFe garnet system. The agreement between the two methods is quite good, but is actually even better than it looks if we take the 0°K moments that the other authors obtained for their specimens (see Ref. ²⁷). Fig. 6. Fraction, f_t , of Ga²⁺ and Al³⁺ ions in tetrahedral sites in Y₃Fe_{5-x}Ga_z0 and Y₃Fe_{5-x}Al_xO₁₂, respectively (from Ref.²⁷) Fig. 7. Lattice constant vs x (from Ref. 27) For x > 1.50, the distribution appears to be sensitive to specime heat treatment and this may be part of the reason for different 0° moments obtained by different investigators. The importance of car in specimen preparation cannot be overestimated. In many system the lattice-constant measurements can give an indication of the specimen quality. Smooth curves should be obtained for lattice constant and moment, at a fixed temperature, vs composition. Examples from the Y₃Fe_{5-x}Ga_xO₁₂ system are given in Figs. 7 and 8. Fig. 6 shows that for most of the composition range the Ga³⁺ ions have a greater preference for tetrahedral sites (f_t = fraction of Ga³⁺ or Al³⁺ ions in tetrahedral sites) than Al³⁺ ions to $x \approx 2.75$. For z > 2.75, the curves may coincide or cross. Unfortunately, we cannot Fig.8. Spontaneous moment at 0° K vs x (from Ref.²⁷). (See Ref.²⁷ for pertinent references) learn from static magnetic measurements anything about ionic distributions in specimens with x greater than 3.00. Furthermore, it is unlikely that the accuracy desired is attainable by diffraction techniques. In regard to the diffraction techniques, a paper by FISCHER et al. 104 purports to give the distributions in the systems by both x-ray and ¹⁶⁴ P. Fischer, W. Hälg, E. Stoll and A. Segmüller, X-ray and neutron fraction study of substitutional disorder in yttrium-iron-gallium garnets. A ta Crystallogr. 21 (1966) 765—769.